Haoran Lu

Room 104, Jingyuan No.5 Courtyard, Peking University, Beijing, P.R. China 100871 Tel: (+86) 18515127480 Email: <u>luhr@stu.pku.edu.cn</u> Website: luhr2003.github.io

EDUCATION BACKGROUND

• Peking University, Beijing, China Bachelor of Science, Computer Science and Technology

- Advisor: Prof. Hao Dong
- Lab: Hyperplane Lab, Center on Frontiers of Computing Studies
- GPA:3.685/4.0
- Top 25% in the grade
- Peking University, Beijing, China Bachelor of Economic

Sept 2021 - Present (expected July 2025)

Sept 2022 - Present (expected July 2025)

PUBLICATIONS (* denotes equal contribution;)

- GarmentLab: A Unified Simulation and Benchmark for Garment Manipulation Haoran Lu*, Ruihai Wu*, Yitong Li*, Zijie Zhang, Ziyu Zhu, Longzan Long, Chuanruo Ning, Yan Shen, Hao Dong NeurIPS 2024
- UniGarmentManip:Learning Dense Visual Correspondence for Category-level Garment Manipulation Ruihai Wu*, Haoran Lu*, Yiyan Wang, Yubo Wang, Hao Dong CVPR 2024
- Broadcasting Support Relations from Local Dynamics for Object Retrieval in Clutters Yitong Li*, Ruihai Wu*, Haoran Lu, Chuanruo Ning, Yan Shen, Guanqi Zhan, Hao Dong RSS 2024(Oral)
- Where2Explore: Few-shot Affordance Learning for Unseen Novel Categories of Articulated Objects Chuanruo Ning*, Ruihai Wu*, Haoran Lu, Kaichun Mo, Hao Dong NeurIPS 2023
- UniGarment: A Unified Simulation and Benchmark for Garment Manipulation(Extended Abstract) Haoran Lu*, Yitong Li*, Ruihai Wu*, Chuanruo Ning, Yan Shen, Hao Dong ICRA 2024 Representing and Manipulating Deformable Objects Workshop(Oral)
- Neural Dynamics Augmented Diffusion Policy Ruihai Wu*, Mingtong Zhang*, Haozhe Chen*, Haoran Lu, Yitong Li, Yunzhu Li ICRA 2025 under review
- ImageManip: Image-based Robotic Manipulation with Affordance-guided Next View Selection Xiaoqi Li, Yanzi Wang, Yan Zhao, Yaroslav Ponomarenko, Qianxu Wang, Haoran Lu, Boshi An, Jiaming Liu, Hao Dong

ICRA 2025 under review

 BiAssemble:Learning Collaborative Affordance for Bimanual Geometric Assembly Yan Shen, Ruihai Wu, yubin Ke, Xinyuan Song, Zeyi Li, Xiaoqi Li, Hongwei Fan, Haoran Lu, Hao Dong ICLR 2025 under review

Selected Publication

- GarmentLab: A Unified Simulation and Benchmark for Garment Manipulation
- We propose GarmentLab Environment, a realistic and rich environment for garment manipulation, featuring diverse simulation methods, assets, object physics and multi-material interactions
- We propose GarmentLab Benchmark, benchmarking a large variety of garment manipulation tasks, and providing the first real-world garment manipulation benchmark that can be reproduced internationally
- > We integrate different sim2real methods and **teleoperation** into GarmentLab, providing solutions to narrowing the sim2real and further facilitating the real-world applications.

• UniGarmentManip:Learning Dense Visual Correspondence for Category-level Garment Manipulation

- ➤ We propose the first cross-object garment manipulation universal operation strategy.
- > We propose to learn category-level dense visual correspondence to reflect the topological and functional correspondence across garments in different styles or deformations,
- > We propose an unified representation that facilitates manipulating diverse unseen garments in multiple tasks with one or few-shot demonstrations.

Service

- NeurIPS 2024 reviewer
- ➢ ICLR 2025 reviewer
- AISTATS 2025 reviewer

Past Research Experience

 Advisor: Prof. Alan L. Yuille and Ph.D candidate Jieneng Chen Johns Hopkins University Project: VisualGraph: Towards more controllable and interpretable visual representation Using LLM Using MLLM to generate hierarchy graph representation of Image Exploring VLM and LLM capability on Image information Retrieval and Understanding Fine-tune VLM and LLM using RL to enhance model's understanding of object structure Summer Intern of RoboPIL research lab Advisor: Yunzhu Li Columbia University Project: DynRotate: Tactile-Visual Fusion for Dynamic Object Reorientation via Collision Vising a Dynamic Model to Predict Object Behavior After Collision with Tactile Feedback To establish a visual-tactile simulation system and a teleoperation system for the purpose of collecting data. Using Motion Planning to Plan Robot Actions for Object Reorientation National Basic Science Talent Cultivation Plan Top 10% in EECS Department Advisor: Prof. Hao Dong Lab: Hyperplane Lab, Center on Frontiers of Computing Studies Research Assistant (RA) in - The School of Artificial Intelligence of PKU Advisor: Prof. BaoQuan Chen 	• Su	mmer Intern of CCVL (Computational Cognition, Vision, and Learning) research group	2024.7 - present
 Project: VisualGraph: Towards more controllable and interpretable visual representation Using LLM Using MLLM to generate hierarchy graph representation of Image Exploring VLM and LLM capability on Image information Retrieval and Understanding Fine-tune VLM and LLM using RL to enhance model's understanding of object structure Summer Intern of RoboPIL research lab Advisor: Yunzhu Li Columbia University Project: DynRotate: Tactile-Visual Fusion for Dynamic Object Reorientation via Collision Using a Dynamic Model to Predict Object Behavior After Collision with Tactile Feedback To establish a visual-tactile simulation system and a teleoperation system for the purpose of collecting data. Using Motion Planning to Plan Robot Actions for Object Reorientation National Basic Science Talent Cultivation Plan Top 10% in EECS Department Research Assistant (RA) in - Center on Frontiers of Computing Studies Advisor: Prof. Hao Dong Lab: Hyperplane Lab, Center on Frontiers of Computing Studies Research Assistant (RA) in - The School of Artificial Intelligence of PKU Advisor: Prof. BaoQuan Chen 	-	Advisor: Prof. Alan L. Yuille and Ph.D candidate Jieneng Chen	
 Using MLLM to generate hierarchy graph representation of Image Exploring VLM and LLM capability on Image information Retrieval and Understanding Fine-tune VLM and LLM using RL to enhance model's understanding of object structure Summer Intern of RoboPIL research lab Advisor: Yunzhu Li Columbia University Project: DynRotate: Tactile-Visual Fusion for Dynamic Object Reorientation via Collision Using a Dynamic Model to Predict Object Behavior After Collision with Tactile Feedback To establish a visual-tactile simulation system and a teleoperation system for the purpose of collecting data. Using Motion Planning to Plan Robot Actions for Object Reorientation National Basic Science Talent Cultivation Plan 2023.6 - present Advisor: Prof. Hao Dong Lab: Hyperplane Lab, Center on Frontiers of Computing Studies Research Assistant (RA) in - The School of Artificial Intelligence of PKU 2023.1 - 2023.6 	-	Johns Hopkins University	
 Exploring VLM and LLM capability on Image information Retrieval and Understanding Fine-tune VLM and LLM using RL to enhance model's understanding of object structure Summer Intern of RoboPIL research lab Advisor: Yunzhu Li Columbia University Project: DynRotate: Tactile-Visual Fusion for Dynamic Object Reorientation via Collision Using a Dynamic Model to Predict Object Behavior After Collision with Tactile Feedback To establish a visual-tactile simulation system and a teleoperation system for the purpose of collecting data. Using Motion Planning to Plan Robot Actions for Object Reorientation National Basic Science Talent Cultivation Plan Top 10% in EECS Department Research Assistant (RA) in - Center on Frontiers of Computing Studies Lab: Hyperplane Lab, Center on Frontiers of Computing Studies Research Assistant (RA) in - The School of Artificial Intelligence of PKU Advisor: Prof. BaoQuan Chen 	-	Project: VisualGraph: Towards more controllable and interpretable visual representation	n Using LLM
 Fine-tune VLM and LLM using RL to enhance model's understanding of object structure Summer Intern of RoboPIL research lab Advisor: Yunzhu Li Columbia University Project: DynRotate: Tactile-Visual Fusion for Dynamic Object Reorientation via Collision Using a Dynamic Model to Predict Object Behavior After Collision with Tactile Feedback To establish a visual-tactile simulation system and a teleoperation system for the purpose of collecting data. Using Motion Planning to Plan Robot Actions for Object Reorientation National Basic Science Talent Cultivation Plan Research Assistant (RA) in - Center on Frontiers of Computing Studies Iab: Hyperplane Lab, Center on Frontiers of Computing Studies Research Assistant (RA) in - The School of Artificial Intelligence of PKU Advisor: Prof. BaoQuan Chen 	\triangleright	Using MLLM to generate hierarchy graph representation of Image	
 Summer Intern of RoboPIL research lab Advisor: Yunzhu Li Columbia University Project: DynRotate: Tactile-Visual Fusion for Dynamic Object Reorientation via Collision Using a Dynamic Model to Predict Object Behavior After Collision with Tactile Feedback To establish a visual-tactile simulation system and a teleoperation system for the purpose of collecting data. Using Motion Planning to Plan Robot Actions for Object Reorientation National Basic Science Talent Cultivation Plan Top 10% in EECS Department Research Assistant (RA) in - Center on Frontiers of Computing Studies Advisor: Prof. Hao Dong Lab: Hyperplane Lab, Center on Frontiers of Computing Studies Research Assistant (RA) in - The School of Artificial Intelligence of PKU Advisor: Prof. BaoQuan Chen 	۶	Exploring VLM and LLM capability on Image information Retrieval and Understanding	
 Advisor: Yunzhu Li Columbia University Project: DynRotate: Tactile-Visual Fusion for Dynamic Object Reorientation via Collision Using a Dynamic Model to Predict Object Behavior After Collision with Tactile Feedback To establish a visual-tactile simulation system and a teleoperation system for the purpose of collecting data. Using Motion Planning to Plan Robot Actions for Object Reorientation National Basic Science Talent Cultivation Plan 2022.9 - present Top 10% in EECS Department Research Assistant (RA) in - Center on Frontiers of Computing Studies Advisor: Prof. Hao Dong Lab: Hyperplane Lab, Center on Frontiers of Computing Studies Research Assistant (RA) in - The School of Artificial Intelligence of PKU 2023.1 - 2023.6 	⋟	Fine-tune VLM and LLM using RL to enhance model's understanding of object structure	
 Columbia University Project: DynRotate: Tactile-Visual Fusion for Dynamic Object Reorientation via Collision Using a Dynamic Model to Predict Object Behavior After Collision with Tactile Feedback To establish a visual-tactile simulation system and a teleoperation system for the purpose of collecting data. Using Motion Planning to Plan Robot Actions for Object Reorientation National Basic Science Talent Cultivation Plan 2022.9 - present Top 10% in EECS Department Research Assistant (RA) in - Center on Frontiers of Computing Studies Advisor: Prof. Hao Dong Lab: Hyperplane Lab, Center on Frontiers of Computing Studies Research Assistant (RA) in - The School of Artificial Intelligence of PKU Advisor: Prof. BaoQuan Chen 	• Su	mmer Intern of RoboPIL research lab	2024.6 - present
 Project: DynRotate: Tactile-Visual Fusion for Dynamic Object Reorientation via Collision Using a Dynamic Model to Predict Object Behavior After Collision with Tactile Feedback To establish a visual-tactile simulation system and a teleoperation system for the purpose of collecting data. Using Motion Planning to Plan Robot Actions for Object Reorientation National Basic Science Talent Cultivation Plan Top 10% in EECS Department Research Assistant (RA) in - Center on Frontiers of Computing Studies Advisor: Prof. Hao Dong Lab: Hyperplane Lab, Center on Frontiers of Computing Studies Research Assistant (RA) in - The School of Artificial Intelligence of PKU Advisor: Prof. BaoQuan Chen 	-	Advisor: Yunzhu Li	
 Using a Dynamic Model to Predict Object Behavior After Collision with Tactile Feedback To establish a visual-tactile simulation system and a teleoperation system for the purpose of collecting data. Using Motion Planning to Plan Robot Actions for Object Reorientation National Basic Science Talent Cultivation Plan 2022.9 - present Top 10% in EECS Department Research Assistant (RA) in - Center on Frontiers of Computing Studies Advisor: Prof. Hao Dong Lab: Hyperplane Lab, Center on Frontiers of Computing Studies Research Assistant (RA) in - The School of Artificial Intelligence of PKU Advisor: Prof. BaoQuan Chen 	-	Columbia University	
 To establish a visual-tactile simulation system and a teleoperation system for the purpose of collecting data. Using Motion Planning to Plan Robot Actions for Object Reorientation National Basic Science Talent Cultivation Plan 2022.9 - present Top 10% in EECS Department Research Assistant (RA) in - Center on Frontiers of Computing Studies Advisor: Prof. Hao Dong Lab: Hyperplane Lab, Center on Frontiers of Computing Studies Research Assistant (RA) in - The School of Artificial Intelligence of PKU 2023.1 - 2023.6 	- Project: DynRotate: Tactile-Visual Fusion for Dynamic Object Reorientation via Collision		
 Using Motion Planning to Plan Robot Actions for Object Reorientation National Basic Science Talent Cultivation Plan Top 10% in EECS Department Research Assistant (RA) in - Center on Frontiers of Computing Studies Advisor: Prof. Hao Dong Lab: Hyperplane Lab, Center on Frontiers of Computing Studies Research Assistant (RA) in - The School of Artificial Intelligence of PKU Advisor: Prof. BaoQuan Chen 	\succ	Using a Dynamic Model to Predict Object Behavior After Collision with Tactile Feedback	
 National Basic Science Talent Cultivation Plan Top 10% in EECS Department Research Assistant (RA) in - Center on Frontiers of Computing Studies Advisor: Prof. Hao Dong Lab: Hyperplane Lab, Center on Frontiers of Computing Studies Research Assistant (RA) in - The School of Artificial Intelligence of PKU Advisor: Prof. BaoQuan Chen 	\triangleright	To establish a visual-tactile simulation system and a teleoperation system for the purpose of co	ollecting data.
 Top 10% in EECS Department Research Assistant (RA) in - Center on Frontiers of Computing Studies Advisor: Prof. Hao Dong Lab: Hyperplane Lab, Center on Frontiers of Computing Studies Research Assistant (RA) in - The School of Artificial Intelligence of PKU Advisor: Prof. BaoQuan Chen 	\triangleright	Using Motion Planning to Plan Robot Actions for Object Reorientation	
 Research Assistant (RA) in - Center on Frontiers of Computing Studies Advisor: Prof. Hao Dong Lab: Hyperplane Lab, Center on Frontiers of Computing Studies Research Assistant (RA) in - The School of Artificial Intelligence of PKU Advisor: Prof. BaoQuan Chen 	• Na	tional Basic Science Talent Cultivation Plan	2022.9 - present
 Advisor: Prof. Hao Dong Lab: Hyperplane Lab, Center on Frontiers of Computing Studies Research Assistant (RA) in - The School of Artificial Intelligence of PKU 2023.1 - 2023.6 Advisor: Prof. BaoQuan Chen 	-	Top 10% in EECS Department	
 Lab: Hyperplane Lab, Center on Frontiers of Computing Studies Research Assistant (RA) in - The School of Artificial Intelligence of PKU Advisor: Prof. BaoQuan Chen 	• Re	search Assistant (RA) in - Center on Frontiers of Computing Studies	2023.6 - present
 Research Assistant (RA) in - The School of Artificial Intelligence of PKU Advisor: Prof. BaoQuan Chen 	-	Advisor: Prof. Hao Dong	
- Advisor: Prof. BaoQuan Chen	-	Lab: Hyperplane Lab, Center on Frontiers of Computing Studies	
	• Re	search Assistant (RA) in - The School of Artificial Intelligence of PKU	2023.1 - 2023.6
	-	Advisor: Prof. BaoQuan Chen	
- Project on simulation of fluid and garment	-	Project on simulation of fluid and garment	

SKILLS

- Language: Chinese (native) English (TOEFL 105)
- Deep Learning Frameworks: PyTorch (Proficient), TensorFlow (Proficient)
- Simulator: Proficient in simulator establishing and using including IsaacSim, IsaacGym, Sapien, Mujoco
- RealWorld Robot: Proficient in Operating Real-World Robotic Arms Including Franka, UR, Shadow Hand, and Xarm

HONORS AND AWARDS

- Community Service Award, Peking University
- Research Excellence Award, *Peking University*
- Academic Excellence Award, Peking University
- Peking University Scholarship Third Prize, Peking University
- UGVR candidate, Stanford University